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ABSTRACT

Sound propagation through the open atmosphere is studied at MSFC
mainly for an estimate of the acoustical energy that sound rays sent up
by static firings and refracted back to ground level may transmit to
inhabited areas. A theoretical expression derived in an earlier report
(Ref. 1) for the volume density of returned energy is converted into an
expression for the corresponding intensity level to accommodate it to
engineering practice. A first approximation of the latter's relation-
ship to the sound pressure level (as an observable quantity) is estab-
lished. The results of the theory can thus be compared to those of
field measurements by microphones, and a basis for theoretical pre-

diction is prepared. CZ];t2;4/7

NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER




NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER

Technical Memorandum X-53035

April 22, 1964

ON SOUND INTENSITY AND SOUND PRESSURE LEVELS

By

Willi H. Heybey

AERO-ASTRODYNAMICS LABORATORY




TABLE OF CONTENTS

Page
SUMMARY L.ttt ittt et i i ettt 1
THEORETICAL INTENSITY OF RETURNINC SOUND PRESSURE LEVELS ........ 1
FIRST APPROXIMATION LINKS IN A SOUND PULSE .............ivunenn. 5
LOCAL RELATIONSHIP OF INTENSITY LEVEL AND SOUND PRESSURE
B T T 10
REFERENCES ..ttt ittt enateesenaneaanannnnnns 17

iii




Symbol

1€

(o)

E(O)

DEFINITION OF SYMBOLS
Definition

oscillatory pressure

density

specific entrophy

velocity vector in a paradigmatic sinusoidal
sound wave of circular frequency, w

superscript referring to conditions in the
undis turbed atmosphere

wind vector

symbol used to denote the overall state in the
vibrating atmosphere, e.g.,

5 =0 +p

©) .

f=
I

A\ w

symbol used to designate amplitude, e.g.,
_ /ﬁe(wt - kOW)l

W = ﬁe(wt - kWi

spatial coordinate

wave number

time required for full oscillation
volumn density of sound energy

directed propagation speed of sound energy

sound intensity

iv
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DEFINITION OF SYMBOLS (Continued)
Definition

reference intensity (either one of two values,
ot
I7 and Ié, are commonly used - see p. 4)

unit vector in the direction of the local wave
front normal

wave speed in this direction



DEFINITIONS
square root of the

SOUND PRESSURE as recorded by instruments is the
time average of pZ:

]
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o
N
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0.0002 microbar.

REFERENCE PRESSURE: p¥* =

P
SOUND PRESSURE LEVEL: 20 logqo E; .

INTENSITY LEVEL: 10 logio %% .

The reference value for the power is

P: power of the sound source.
taken as 10712 watt, so that POWER LEVEL is given by:

P
10-13 .

D = 10 log

A fuller mode of writing the left side indicates the reference value:
The unit for levels is always the decibel.

D db re 10-13 watt.

© _[. p> .
7p<o)'

thermodynamic sound speed in the undisturbed atmosphere,

vi



TECHNICAL MEMORANDUM X-53035

ON SOUND INTENSITY AND SOUND PRESSURE LEVELS
SUMMARY

An expression is given for the rearrival intensity level of sound
emitted by a point source, if an infinitesimal ray bundle, without
experiencing physical attenuation of energy, is returned to the hori-
zontal plane on which the source is sitting. 1Its relation to the sound
pressure level, so far known only in the case of plane and spherical
waves, has been set up in general using a first approximation approach.
1t was found that the sound pressure level at ground is, in many cases,
not greatly different from the intensity lcvel, and that the difference
can be easily computed., A theoretical value of the sound pressure level
is thus made available which may be compared to the sound pressure level
as determined experimentally at any given return distance.

I. THEORETICAL INTENSITY OF RETURNING SOUND RAYS

Common practice in calculating sound ray patterns assumes that
rays which leave the point source in a vertical half-plane do not
swerve from this plane later on so that a two-dimensional treatment
becomes possible., Bundles of these rays may return to the ground at
source level, If the plane can be divided up into horizontal layers
in which the propagation velocity of sound varies linearly with height
alone, it is possible to give an explicit formula for the landing dis-
tance, Xg, of such rays which, aside from fixed parameters, depends on
the initial angle, 6y, of ray elevation:

Xy = f(o0).

In Reference 1, the volume density, €¢g, of the acoustical energy trans-
mitted to ground level by an infinitesimally small ray bundle, with
nearly equal angles of departure around 0p, is given as

xljd

do
-0
) ldxs| cotg Go, (1)



where ¢ is the volume density of energy found on the surface of a sphere
of sufficiently small radius T about the source.®* Strictly speaking,
the value of € ought to be determined experimentally; however, if the
acoustical power of the source is known, the product ¢f? can be calcu-
lated from it to some degree of accuracy. 1In deriving the expression
(1), physical attenuation of energy is mot taken into account (while it
includes the effects of geometrical ray spreading or compressing). The
numerical value found for ¢g is therefore an upper bound rarely or never
obtained in practice.

Field measurements of returned sound energy are usually quoted in
terms of sound pressure levels. It is desirable to establish a correla-
tion between the observational results and the theoretical prediction (1).

Since acoustical rays are defined as the propagation lines of

energy, the volume element dA ds of a ray tube can be assigned the
energy density ¢, so that

dE = ¢ dA ds

is the mean vibrational energy contained in the element. If V is the

propagation velocity at the location considered, the arc length element
ds is equal to Vdt, and

dE = ¢ V dA dt. (2)

This relation will first be used to compute crZ. Assume that the
acoustical power level of the point source is known to be

PWL = D db re 10-1° watt (3)

which means that the power, P, of the source is

D-130

P =10 10 watt, )

ata

* The symbol € replaces the symbol p as used in Reference 1, since the
latter will denote gas density in the present report.




While in a close neighborhood of the source, the propagation
velocity can be taken as constant with height; the presence of wind
will cause it to have different values depending on the azimuth, ¢, at
which the vertical plane under consideration is erected.

A half-sphere with the small radius # about the source can be
ided {(comp. Figure 1) into vertical slices of opening angle d¢ whose
surfaces are

Air
aiv

Through each of these elements passes the energy

2~
um
3

N
A

per unit time, provided that the radiation is uniform in all directioms.
It follows from relation (2) that

= ¢ Vo £2 do

where € is the volume density of energy on the slice surface, and Vg
is the propagation speed near the source. Thus,

- 2x Vo ° (5)

The value of the product at left depends on V,, i.e., on the azimuthal
direction of the vertical plane selected. Extended sources can be con-
sidered as point sources if far-field effects are of interest only;
however, their radiation might not be isotropic. Relation (5) then
offers an approximation only. In severe cases one would have to resort
to measurements of the energy radiated in the different directions, the
total amount being of no use in these circumstances,



From relation (2) the intensity, i.e., the energy passing per unit
time through the unit frontal area,is seen to be

I=¢V. (6)

When the radiation arrives at the ground again, e = €g, V = V,; expres-
sion (1) may then be written as

P 1 dg watts
= o — =20
Ty 2y % .dxsl cotg o length= * )

The reference level for intensities is variously given in the
literature, either as

(8)

% watts
= 10-16 —p~

Since 1(ft)2 =~ 9,29 x 102 cm®, these values are nearly equal, They
correspond roughly to the minimum intensity required for a 1000 cps
sound excitation to be registered by the average person.

Tntensity level in db is defined as 10 times the Briggs' logarithm
of the ratio Ig/I*. Since

1
logo 7= ~ 0.8,

one obtains from the expression (7) and the two conventions (8), that

1L = {D - 8+ 10 logio L l%ﬁg| cotg GOJ db re 10713 W;Ets
xg ldxg T
(9)
1 ,ds -1 Watts
= — |==Q 16 .
IL {D + 22 + 10 logqo e ldxsl cotg eo} db re 10 =




The numerical value of D is connected with that of the source's acous-
tical power by formula (4) or (3). The argument of the logarithm, for
a piecewise linear velocity distribution depending on height alone, can
be obtained from the expressions. (31) and (33) derived in Reference 1.
For correct computation of the intensity level it is necessary to
express the landing distance, xg, which originally may be given in any
arbitrary length unit, in terms of ft or cm, respectively.

For example, if the propagation velocity is a linear and increasing
function of height, the argument of the logarithm for small initial ray
elevations 9y is roughly 1/x52. At xg = 3 km distance the two expres-
sions (9) then give

IL = [D - 87.87] db re 10-1° Y2EES
\+ -y
IL = [D - 87.54] db re 10-16 ¥ALLs

cm

The results are nearly equal, because the reference intensities are
almost equal. These figures, as was mentioned before, do not allow
for the effects of physical attenuation through molecular absorption,
turbulent scattering and the like,

For possible practical applications, it may be mentioned that, in
Reference 2, the acoustical power level for a Saturn booster delivering
1.5 x 10° pounds of thrust has been estimated as

PWL = 209 db re 10-13 watt,

so that D = 209 in this case. The exhaust velocity was taken as

8500 ft/sec, and it was assumed that one percent of the jet's total
power is converted into acoustical power. This figure is not very
definite; for example, 1/27% is sometimes quoted in the literature for
static tests of Saturn and Jupiter. Then, D = 202,

IT, FIRST APPROXIMATION LINKS IN A SOUND PULSE

In experimental practice, sound pressure levels rather than
intensity levels are measured., For comparison with observational
evidence, it appears necessary to set up a theoretical relationship
of the average intensity (9) and the average sound pressure existing



in a pulse, A first order approximation to this relation has been
obtained by Blokhintzev [3], although in a somewhat cursory manner;
the derivation furthermore uses assumptions made elsewhere in the
treatise and not mentioned again., A fuller account of the way lead-
ing to the relationship is desirable, and is given here. The nota-
tion used is that of Reference 1 (excepting energy density which is
now called €),

The state of the undisturbed atmosphere (including the wind velocity
vector) is allowed to change from spot to spot, but not so in time; it
is steady in the aerodynamic sense., An upper index (o) will be used to
characterize 1it,

A sound disturbance wandering across the stationary atmosphere will
introduce a time dependency in such oscillatory quantities as velocity
(w), pressure (p), density (p), specific entropy (s); the latter replaces
the customary quantity of temperature. ''Sound pressure'" as observed
will be the root mean square over the oscillation time:

p_ = Jﬁi?. (10)

This is the quantity which is to be related to the energy density. For
plane or point sources in a windless and constant-state atmosphere, this
can be achieved by solving the wave equation (comp., e.g., Ref. 4).
However, the mathematical difficulties are all but insurmountable in
more complex (and more real) cases since then the standard form of the
wave equation cannot be obtained from the aerodynamic equations. An
approximation procedure must be invented before one can hope for results.

The state of the inhomogeneous and anisotropic atmosphere described
above may be written as

W= E(O) +w (E(O) being the wind vector)
p=p +p
(11)
N )
5= p( )+ o
s = s(o) + s,




The wave is considered as creating an oscillatory perturbation in
terms so small that their squares and products can be neglected (linear
acoustics). A solution is sought of the time-dependent "local" aero-
dynamic equations describing the pulse motion as existing within a small
neighborhood of space. 1In it, the oscillatory quantities can be taken
as being in phase for nearly plane waves, and even with spherical waves
if the wave number is large; this result issues from the rigorous treat-
ment of such waves (comp., e.g., Ref. 4). If one takes this as true for
general wave forms, the oscillatory quantities may be written as

ig

e, p=pe? (12)

o>
[

W =

1>

etc., with the same oscillation argument
g = wt = kW

applying to all of them. A representative circular frequency (w) and
wave number (k,) are thus introduced; W stands for a spatial coordinate
(which will be taken in the direction of the longitudinal oscillation at
the given spot). The wave number ko is considered large (rapid oscil-
lations). This renders the approximation less trustworthy for long-wave
sound for which, however, ray acoustics are of doubtful value anyway since
diffraction effects caused by atmospheric turbulence may become noticeable
if not dominant. On the other hand, with ko large, the amplitudes may be
expanded in terms of 1/ik0, which step is fundamental in Blokintzev's
approach to the problem:*

~o_ 1 gt — At Al
w=w + EE;‘W’ + see, P p + EE;-p + ..., etc,

* An expansion of this kind is not feasible if, in expressions (12), the
real rather than the complex representation is chosen, The indispensable
relation (13) can then be obtained by making use of the local character
of the solution: The oscillation amplitudes, their change in time and
space, and the local change of the "undisturbed" parameters must all be
considered small, It is found again that the first approximation (13)
should improve if kg, is large.



Terms with n primes are called here the nth approximation of the ampli-
tude in question (by B.the (n-1)th). For the determination of these
approximations, the aerodynamic equations are available; one finds that
they can be divided through by the oscillation term el?., It can be
shown that the quantities w and k, have no bearing at all on ray patterns
and energy contents and that, if instead of the simple oscillations (12)
a sum or series of superimposing linear oscillations is prescribed, the
equations for the amplitude approximations remain unchanged. They are
obtained as a group of five for each approximation, so that the corres-
ponding amplitudes of the velocity vector, of the pressure and the
entropy can be determined. (By the equation of state, taken as

=Ry T(¥, &), the density has been removed as an explicit quantity.)

Regarding the first approximation, it is found that 8' = 0 and that
the remaining amplitudes are governed by the equations

A

1
! - =
q ;KBT grad W =0

1>

5} 0) A
q—%o—)g—p()_vz'-gradw=0
c

where c¢(©) is the thermodynamic sound speed at the location where the
oscillation takes place at the moment. This system of four algebraic
equations is homogeneous so that one of the unknowns, e.g., the first
approximation pressure amplitude p', may be prescribed at will. It
must and can be given an approximate definitive value only if the power
of the source is known and if a relationship of the intensity level (9)
(which contains the power in the quantity D) and the sound pressure
level is established. The above homogeneous system has solutions dif-
ferent from zero on condition that its determinant is zero, leading to
the requirement

q= (@) |grad W|.

It is seen that the meaning of the quantity q is of no interest in the

present context; it can be removed, for example, from the first equation,
to give

©) (o) (13)

1=

I

f=}
D IU




where n is the unit vector in the direction of grad W, i.e., in the
direction of the wave front normal. This relation w111 prove to be
material in setting up the desired connection of ¢ and pp. It shows
also that the first approximation to the oscillation velocity is normal

to the wave front at the spot considered, as it ought to be with longi-
tudinal oscillations.

An equation connecting vibrational pressure and density is also

needed, Taking entropy and density as the independent variables, the
oscillatory pressure may be expanded into a Taylor series

QR o

S=0

which, in linear acoustics, may be truncated after the first two terms,
The partial derivatives can be obtained from the equation of state; on
replacing temperature by specific entropy, it assumes the form

s

2

c
p = const, 57 eV with y = ZR'
v

The undisturbed state of the atmosphere is independent of  and s, so
that logarithmic partial derivation with respect to p and s gives

O/L%/
©
|
(o (0%
1S
1

I
<
toNd I

L
C
v

o
TR

On applying the condition p = 0, s 0 one finds that

(o)
@ 4 — s (14)
v
as
(o) 2
p _ (o)
Y (O) C -

e



This equation holds for the amplitudes P etc., as well, since the
common factor elg cancels out.* 1In the first approximation (8' = 0)
we have

o= Oy (15)

ITI, LOCAL RELATIONSHIP OF INTENSITY LEVEL AND SOUND PRESSURE LEVEL

The kinetic energy contained in a pulse is obtained by subtract-
ing the drift or "undisturbed" energy from the total kinetic energy;
its volume density is therefore

’:7’2

1 ~ 1 o 0)“
(=l oL@ OF

-t

On using the approaches (11), this gives
2
2K = Q(O) (ZE(O) - W + E2) + 0 <."_‘7(O) + 2E(O) . E+ 2\7.2)’

For determining the average of kK over the oscillation period, T, one
best changes the complex into the real representation employing, e.g.,
the cosine function

e cos(g + phase term).

As the integrals over the odd powers of the cosine function vanish and
that over the square is T/2,

T (o) 42

-1 I NP ()
2K—Tf2Kdt— > + pow

<>

* So does the oscillatory term in the real representation,

10




The second term in this expression is clearly caused by the presence of
the wind (E(O)), which takes the oscillation along. The first term is
twice the average of the specific kinetic energy contained in the vibra-
tion itself and is therefore, in a linear oscillation, equal to twice
the time average of the specific potential energy existing in the pulse,
The latter must be added to obtain the volume density of the total
vibrational energy which thus emerges as

- L (p(o)

€= 3

=2+ o w - W. (16)

If for the quantities {5 and § their first approximations are introduced,
they may be replaced by p' with the aid of the relations (13) and (15).
Since

]. Pal 1 Pa)
5 §'% ~5 B2 = p? =p 5,
one finds that
c(°) +o E(0)
— 2
€=0p 3 . (17)
m p(0) C(O)

The propagation velocity of the energy being

N OO}

v
X
the expression (6) for the intensity then gives

© , . O

c w

SN OBROLE (18

I=p

Formula (18) is the desired relation between the average intensity
and the measured sound pressure in a first approximation. Upper indices
(0) refer to the state of the atmosphere at the location occupied by the
pulse at a given moment, As a rule, these quantities are functions of

11



space (but not of time in a steady atmosphere). If the square of the
wind velocity is small when compared to the square of the thermodynamic
sound speed (as common practice assumes), it can be shown [1] that

v~ +n.w® =y,

where V¢ is the speed with which the wave front moves in direction of its
local normal (wave speed). With this simplification,

V2
o f

m p(o) NO N (19

(o)

In a windless atmosphere [w
form

= 0], expression (18) assumes the familiar

I = ——t—r, (20)

which rule comes out here as a first approximation result, but, for
plane and spherical waves, can be derived from the rigorous solution

of the wave equation; see, e.g., Reference 4. It appears now that, as
a first approximation, this relation has a much wider scope. It is not
confined to special types of waves that can exist in a homogeneous
atmosphere (p(0) c(0) = const.); in fact, the only restriction made is
the absence of wind.

As an immediate application, we may determine the value of the

1.

acoustical impedance, p*c®, related to the reference pressure
p* = 0,0002 pb (21)

and either one of the two values given for the reference intensity I”
in formula (8). One finds that

% % _ dyne sec - * _ -15 watts
(p"c™), = 37.16 o for I7 = 10 z¥€;g
(22)
(pFc¥), = 40 d¥REgeC for 1% = 1070 ¥AEZS

12




These figures may be compared to those holding in a homogeneous
atmosphere at sea level condition everywhere. Reference 5 gives, on
p. 222, that at sea level

C(O) = 344 m/sec, p(o) = 0,00121 g/cma;

therefore,

(@ () < 4y gp dymesee

This agrees with the findings from the model atmosphere published in
Reference 6, where we learn that, at sea level,

€0)

p(0)

() 0 4y ¢ dme gec

288.16°K — ¢'®) ~ 340 m/sec, from p. 1-10

]

1.225 kg/m®, from p. 1-13, so that again

In such a sea level atmosphere the intensity level is numerically
nearly equal to the sound pressure level, Indeed, the equation holds
[by (20)]:

(o) (o) P
I o) c m
10 logio 7 + 10 log;o =g = 20 logio o

and the second term at left is found as 0,49 db and 0.17 db with the
reference values I¥ and IX. With high levels, small differences like
these might be considered as negligibly small, and the sound pressure
level may be taken as equal to the intensity level. However, in the
real atmosphere, the acoustical impedance may markedly differ from
p*c*, The difference may then amount to several decibels.

For example, consider the atmosphere as two-dimensional as defined
in Reference 1, Assume furthermore that the ray inclination is always
small and that the wind is horizontal, so that the expression for the
wave (and energy propagation) speed can be written in the simple form

Vf = C(O) + Uy

13




where u,; is the component of the horizontal wind in the azimuthal half-
plane to which the sound ray pattern is confined in the two-dimensional
analysis. Expression (19) which is pertinent here can now be set into
the form

. ©) (o)
10 logio b3 + logio £ = 20 log,o

2
E 1 + U7
prc < C(°)>

From the model atmosphere given in Reference 6 it is seen that, at &4 km
height, for example,

P

m
== 23
5 (23)

o{® = 0,819 kg/m2, T = 262.18°k — ¢(® ~ 324 w/sec

p(? )« 26,54 dymesec

If we take u; as 10 percent of c(o), the second term at left assumes the
values

- 2.3 db and - 2.6 db

for the reference intensities Ii and Ig. By so much is the intensity
level higher here than the sound pressure level.

In passing it may be noted that Ii will always produce a difference
that is by = 0,32 db algebraically larger than that caused by Ig, since

10 log 1o 3%(.)_16 ~ 0.32.

The main application of relation (23) will be at the rearrival
locations of rays at source level. It can then be safely assumed that
the logarithmand of the second term will rarely deviate much from unity
except at extremely hot, cold, and/or windy days. By and large, the
impedance p(0) ¢(0) will be close to 40, and the factor

2

u
(14 x0)

14




will be near unity, In many cases, the intensity level will be dif-
ferent from the sound pressure level by a fractional db-number only,
However, since the computation by expression (23) of the difference is
simple, one may prefer to take account of it as a matter of routine.
The theoretical sound pressure level is then known somewhat more
accurately than when merely equating it with the intensity level. The
choice of I* will affect the value of p*c* to be used in the intensity
and sound pressure level relation (23); see expressions (22),

15
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FIGURE 1.

SURFACE ELEMENT OF THE HALF-SPHERE ABOUT THE SOURCE




REFERENCES

W. Heybey, ""Notes on Sound Propagation and Focusing,'" MTP-AERO-62-17,
MSFC, March 1962, Unclassified.

Estimate of the Sound and Vibration Fields During Static Firing of
a Saturn Vehicle and Analysis of the Damage Problem. Bolt, Beranek
and Newman Rep. 679, January 1960,

Blokhintzev, D., "The Acoustics of an Inhomogeneous Moving Medium,"
Translated from the Russian by Robert T, Bayer and David Mintzer,

Physics Department, Brown Univ., Providence, Rhode Island, August
1962,

Kinsler, L. E., and A, R, Frey, '"Fundamentals of Acoustics,"
John Wiley and Sons, New York and London, 1960,

Morse, P. M., "Vibration and Sound," Second Edition, McGraw-Hill,
New York, Toronto, London, 1948,

Handbook of Geophysics, Revised Edition, USAF, The McMillan Co.,
New York, 1961,

17



April 22, 1964 APPROVAL NASA T X-53035

ON SOUND INTENSITY AND SOUND PRESSURE LEVELS

By Willi H. Heybey

The information in this report has been reviewed for security
classification. Review of any information concerning Department of
Defense or Atomic Energy Commission programs has been made by the MSFC
Security Classification Officer. This report, in its entirety, has been
determined to be unclassified.

This document has also been reviewed and approved for technical
accuracy.

%WM,@

E. D, Geissler
Director, Aero-Astrodynamics Laboratory

18




MS-TIP
MS-TIPL (8)

R-AERO
Dr. Geissler
Mr., Jean
Mr. de Fries
Mr, Reed
Mr. Wilhold
Mr, Murphree

Dr. Heybey (20)

Dr. Sperling
Mr. Cummings
Mr. Dickey
Mr. Mabry
Mr. Vaughan
Mr. Turner
Mr. Scoggins

Mr. 0. Smith (5)
Mr. McBryde (2)

Mr. Schow
Mr. Dahm

Mr. Holderer
Mr, Linsley
Dr. Krause
Dr. Speer
Mr, Horn

Mr. Lavender

Mr. Rheinfurth

Dr. Hoelker
Mr., Miner

R-ASTR

Dr. Haeussermann

Mr. Hoberg
Mr. Bell

CC-P
MS-T
Mr, Roy Bland

DISTRIBUTION

R- COMP

Dr.
Dr.
Mr.
Mr.
Mr.

__Mr.

R-FP
Mr,
Mr.

I-DIR
Mr.
Mr,
Dr.

Hoelzer
Arenstorff
Harness
Moore
Felder

Belew
Morea

Maus

Koelle
Sanders

Young
Heuter
Mrazek

I-MICH

Mr.

Constan

R-P&VE

Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

Hellebrand
Burrows
Showers
Farrow
Gassaway
Johnston
Gudzent
Guest

J. Jones

R-QUAL

Mr.
Mr.

R-DIR
Mr.
Dr.

MS-H

HME-P

Grau
Schulze

Weidner
McCall

19




R-ME
Mr.

1.0-D
Dr.
Mr.
Dr.
Mr.

Mr,
Mr.
Mr.
Dr.
Mr.
Mr,

Kuers

von Tiesenhausen

Gorman
Knothe
Poppel
Brewster
Hershey
Wilkinson
Bruns
Spark
Bodie

Ma jor Petrone

Mr.

Lvo
Dr.
Mr.
Mr,

I-MT

Mr.
Mr.

R-RP
Dr.

Dodd

Debus
Zeiler
Gruene

Fortune
Nybo

.

Stuhlinger

R-TEST

Mr.
Dr.
Dr.
Mr.
Mr.
Mr.
Mr.
PAO
Mr.

R-SA
Mr.

20

Heimberg
Sieber
Reisig
Blake
Thornton
Tedrick

Dorland
Slattery

Dannenberg

Rudolph

DISTRIBUTION (Continued)

I-I/B
Mr., James

EXTERNAL

Research Institute
U. Of A, Extension Center
Attn: Dr. R. Hermann

ORDXM~OTL
Technical Library, AOMC (5)

Jet Propulsion Laboratory, CCMTA
H., Levey

Jet Propulsion Labbratory
4800 Oak Grove Drive
Pasadena 2, California

W. Pickering, DIR (&)

Director, Office of Manned Space Flight (3)
National Aeronautics and Space Administration
Washington 25, D, C.

Langley Research Center
National Aeronautics and Space Admin,.
Langley Field, Hampton, Virginia
Director (2)
Mr. H. H. Hubard, Chief, Acoustics Br.

Director, Goddard Space Flight Center (2)
Greenbelt, Maryland

Director, Ames Research Center (2)
NASA
Moffett Field, California

Lewis Research Center
NASA
2100 Brookpark Road
Cleveland 35, Ohio
Director (2)
Technical Information Division (2)




DISTRIBUTION (Continued)

Engineer in Charge (2)
Wallops Station
National Aeronautics and Space Administration

Director, Manned Spa
Post Offlce Box 1537
Houston, Texas

cecraft Center (2)

Pacific Missile Range (2)
Technical Library

Patrick Air Force Base (2)
Technical Library

White Sands Proving Ground
Technical Library
us

Army ER & DA (2)

Commander, AF Missile Test Center
Patrick AFB, Fla.,
Attn: Technical Information & Intelligence Office, MIGRY

Hq. 6570 Aero Space Medical Research
Aero Space Division, AFSC
Wright Patterson AFB
Dayton, Ohio
Von Gierke (2)
Cole (2)

Scientific and Technical Information Facility (25)
Attn: NASA Representative (S-AK/RKT)

P. 0. Box 5700

Bethesda, Maryland

Commanding Officer

U, S. Army Electronics and Development Activity
White Sands Missile Range

New Mexico

Attn: SELWS-M

Martin-Marietta Corp.

P. 0. Box 179

Denver 1, Colorado

Attn: C. R. Gunnison, A-175

21



